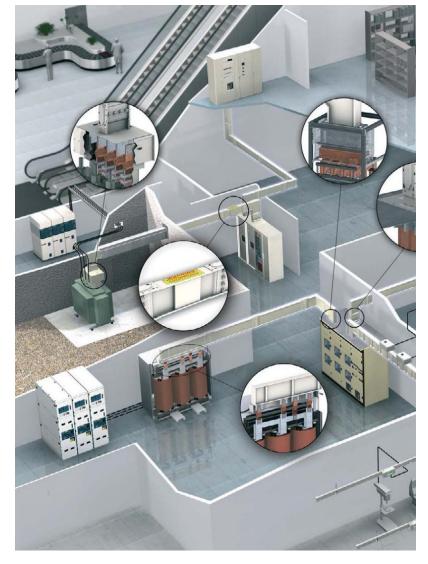


Besondere Anlagen sind kein Hexenwerk!

Prüfen von Stromschienenanlagen

Ineltec, Zürich, 11.09.2024

Marc Moser, Leiter BI D-CH & TI, Electrosuisse



Folgende Informationen beschäftigen sich hauptsächlich mit Stromschienen-Installationen im höheren Leistungsbereich.

Grobe Definition der Leistungsmerkmale:

- Niederspannungsbereich
- Bemessungsstromstärke > 800A
- Transportschienen / Verteilschienen

Bildquelle: Schneider Electric

Normative Eigenheiten

Normativ werden Stromschienen-Systeme in der Norm der Schaltgerätekombinationen SN EN 61439-6 abgehandelt.

Entsprechend sind auch die Prüfverfahren, die mittels Konformitätsbescheinigung bestätigt werden.

Da Stromschienen jedoch Teil der Installation sind, haben sie auch Prüfkriterien der NIN zu erfüllen.

- Insbesondere Themen wie
 - Isolationswiderstand
 - Spannungsfall
 - Kurzschlussfestigkeit
 - Kurzschlussstrom sind bei grossen und weitreichenden Anlagen relevant.

Certified Original Copy

This Certificate applies only to

responsibility for conformity of designation with that verified

rests with the manufacturer or

pared according to LOVAG

Low Voltage Agreement Group

Objectives and Operating Prin-

ciples of mutual recognition. The responsible certification

issues a Certificate of Confor-

Only integral reproduction of

of this page accompanied by

permitted without written permission from the LOVAG Signatory responsible for this

this Certificate or reproductions

any page(s) on which are stated the verifications performed and the assigned rated characteristics of the apparatus

Verification instruction

mity with the above mentioned Standard(s) following the exclusive use of LOVAG

the apparatus verified. The

Certificate

of Conformity

LOVAG-Certificate No.: FR17-001 (Supersedes No. FR16-004a)

Apparatus

Busbar Trunking Systems

Designation Type Reference: KTA

Detailed references are given in the Test Report No. 201400088_010_v3 Trademark: Schneider Electric

Manufacturer

SCHNEIDER ELECTRIC INDUSTRIES SAS

SCHNEIDER ELECTRIC INDUSTRIES SAS 35 rue Joseph Monie 92500 RUEIL MALMAISON - FRANCE

Verified by: ASEFA platform F01

The apparatus, constructed in accordance with the description mentioned in the Test Report listed on this Certificate has been subjected to the series of proving

IEC 61439-6 Ed.1.0 (2012) and IEC 61439-1 Ed 2.0 (2011)

The results are shown in the Test Report in accordance to LOVAG. The values obtained and the general performances are considered to comply with the above Standard(s) and to justify the characteristic assigned by the manufacturer as stated

Rated voltage, Un		1000 V a.c.		Insulating voltage, U				1000 V	
Frequency		50/60 Hz		Impulse withstand voltage, Uimp				12 kV	
Rated current, In		800 A, 1000 A, 1250 A, 1600 A, 2000 A, 2500 A, 3200 A, 4000 A							
Degree of protection IP		IP55							
Fire resistance in building penetration		EI 120							
Short-circuit values for In		800	1000	1250	1600	2000	2500	3200	4000
Short-time withstand current, Icw	(1)	31	50	50	65	70	80	86	90
	(2)	35	65	65	85	110	113	113	120
Peak withstand current, lpk	(1)	64	110	110	143	154	176	189	198
	(2)	73	143	143	187	242	248	248	264
l ² t value	(1)	961	2500	2500	4225	4900	6400	7396	8100
	(2)	1225	4225	4225	7225	12100	12769	12769	14400

(1) Without reinforced protective conductor - Annex 1 (2 pages)

Report No. 201400088_010_v3 (174 pages), Issue Date: 2017-05-17

> **ASEFA** 33, avenue du Général Leclerc

Responsible Certification Body

Accreditation nº 5-0037

po. Vincent SCHUHL Authorized Signature Date: 2017-05-19

OVAG G1-Issue-11-Annex A

Bildquelle: Schneider Electric

Wichtige Infos zu Prüfpunkten

Ausgangslage

Weitreichendes grosskalibriges Stromschienen-Verteilsystem mit Abgangskasten (≥1000 A).

Isolationsmessung

- Einige Stromschienensysteme, bedingt durch ihren Aufbau, weisen kapazitive Eigenschaften auf.
 - → längeres Anlegen der Prüfspannung

Kurzschlussfestigkeit

- Insbesondere die in den Abgangskasten verbauten Komponenten sind auf die Kurzschlussfestigkeit an ihrem Einbauort zu prüfen.
 - \rightarrow ein Abgangskasten kann überall auf dem Schienensystem platziert werden
 - → Hersteller haben teils Systeme bei welchen dieselben Abgangskasten auf Schienenkalibern von 160 - 5000A passen

Wichtige Infos zu Prüfpunkten

Ausgangslage

Weitreichendes grosskalibriges Stromschienen-Verteilsystem mit Abgangskasten (≥1000 A).

Minimaler Kurzschlussstrom

- Messung am Ende einer Stromschieneninstallation
 - → geeignetes Messgerät (hoher Messstrom)
 - → Messpunkt Transportschiene: Einspeisung des zu speisenden Installationsteils
 - → möglicher Messpunkt Verteilschiene: Der am weitesten vom Schutzorgan platzierte «Steckplatz»

Wichtige Infos zu Prüfpunkten

Ausgangslage

Weitreichendes grosskalibriges Stromschienen-Verteilsystem mit Abgangskasten (≥1000 A).

Maximaler Kurzschlussstrom

- Kann mittels Berechnungen und gemäss NIN eruiert werden
- Mittels Messung und Berechnung am Anfang einer Stromschieneninstallation
 - → geeignetes Messgerät (hoher Messstrom)
 - → Messpunkt Transportschiene: Einspeisung des Schienensystems
 - — möglicher Messpunkt Verteilschiene: der am nächsten zum Schutzorgan platzierte «Steckplatz»
 - Wenn das Gerät nicht den max. dreipoligen Kurzschlussstrom messen kann:

Messresultat zwischen zwei Aussenleitern (Polleitern) I_{kL-L} \rightarrow Ik₃ = $2\frac{IkL-L}{\sqrt{3}}$

Mängel aus der Praxis

- Falsche Stromschienentypen bei langen Leitungen (Spannungsfall, minimaler Kurzschlussstrom)
- Schaltgeräte in Abgangskasten zu geringes Abschaltvermögen
- Montagefehler (ungeschultes Montage-Personal)
 - Verbindungsblöcke
 - falsche Abgangskasten
 - falsche Befestigungen
 - Dilatationselemente
 - Phasenwechsler
 - •

Herzlichen Dank für Ihre Aufmerksamkeit